
inDEPTH
The Linux RAM Disk

36 LINUX+DVD 4/2009

inDEPTH
The Linux RAM Disk

37www.lpmagazine.org/en

The Linux RAM Disk

I have always been fascinated about the topic
of RAM disks as it covers some extremely fast
performing I/O concepts.

Petros Koutoupis

The RAM disk has its significant advantages
alongside some major disadvantages
and despite those disadvantages, it still
hasn't prevented it from being used in full

production environments to even the local desktop; where
it is often used as a temporary cache for various services
and applications. The idea is nothing new and has been
around for at least a few decades but as we increase
our computing power and are capable of utilizing larger
amounts of system memory, the concept becomes much
more intriguing.

Sometimes referred to as a RAM drive, a RAM disk
is a chunk of volatile memory that the operating system
is using as a temporary disk drive for temporary data
storage. Note that this is a virtual (or software) RAM
drive and should not be confused with a hardware RAM
drive such as a Solid State Drive (hereafter, SSD). I
explain these hardware implementations further below.
The major advantage to this approach is that memory
performs at such high speeds and the computer in turn
is capable of handling a significant higher workload
with very little latencies. The obvious disadvantage is

that when the computer shuts down or when the power
is somehow disconnected, all contents within the RAM
disk disappear as they only reside in volatile memory.
There are approaches to preserving the data with
some sort of implemented battery backup and also to
synchronize all data contents to a non-volatile form of
media. These techniques will be described further in this
article.

The Linux Pseudo File System
The way in which most traditional RAM disk modules
are presented to the Linux kernel are as pseudo (or
virtual) file systems. From the bootup to the post-bootup
process the Linux operating system utilizes more than
one pseudo file system as a temporary place to mount
the kernel image in rootfs, or a place to store running
processes invoked by applications in procfs, to even
storing all hardware device information in sysfs; all of
which are dynamically allocated and populated every
time the computer is powered on. They are immediately
destroyed when the unit loses power from either a
shutdown or any form of unexpected power failure. For

inDEPTH
The Linux RAM Disk

36 LINUX+DVD 4/2009

inDEPTH
The Linux RAM Disk

37www.lpmagazine.org/en

any other type of computing needs, ramfs
and tmpfs have been created; although the
Linux kernel does support other pseudo
file systems. The /proc/filesystems file lists
all the supported file systems under your
running kernel at the time of listing. If
the first column is labeled with a nodev, it
signifies that the associated file system is
not associated with a block device. Most
if not all of the nodev labeled file systems
listed will be pseudo file systems (see
Listing 1).

While still implemented in the
Linux kernel, there was a time when
the generic Linux RAM disk (listed as a
/dev/ram device) acted and was treated
as a physical storage volume. It was able
to be formatted with a traditional block
device file system and accessed as such.
For example, it could be formatted with
an ext2 file system, as anything with a
journal would have been a wasted effort.
The journal only provided redundancy
in an event of failure. With the contents
gone, there was nothing to recover from.
This method brought with it numerous
handicaps. For instance, once memory
was allocated for use in this virtual
volume, it could never be deallocated until
a system reboot. Also, once the memory
was allocated, it could never be resized.
I do not know if it has changed much
recently but during the Linux 2.4.x kernel
days, it was only useful when dealing with
small files as the default limit of the disk
was 4 MB and it could only be adjusted at
boot time as a kernel option. As a result of
this being used like a normal block device,
it required unnecessarily copying memory
from the virtual block device into/from
the page cache, as well as creating and
destroying dentries. It also needed a file
system driver to format and interpret
this data. This wasted memory, created
unnecessary work for the CPU, wasted
memory bus bandwidth, and polluted the
CPU caches. Something had to change.
That is when developers started looking
in other areas such as an implementation
in the form of a file system. This would
provide some flexibility and easier
manageability.

Enter ramfs and tmpfs
Both ramfs and tmpfs have been around
since the days of the 2.4.x Linux kernel.
The main differences between the two
types of RAM disks is that tmpfs allocates
its memory dynamically thus reducing
its contents from being moved into swap

space. Tmpfs also imposes a size limit (as
specified by the user) which does not allow
it to grow dynamically. If more space is
needed, this is not a problem as tmpfs can
be resized while online by utilizing the
mount command along with the remount
and newly defined size options. Ramfs does
not take advantage of this method of virtual
memory allocation and therefore also never
uses swap space. Ramfs does grow in size
dynamically (consuming more system
memory) which leaves the administrator to
monitor and control all processes writing to
it. If the processes exceed the defined size
limit it may eventually prove to be fatal for
the computing host in the sense that there
will be no memory left to function and
process on anything else. For those of you
coming from a Microsoft background, you
may be used to this concept but a simple
reboot would clear all that up.

Tmpfs was actually built on top of the
ramfs framework and picking a suitable
RAM disk usually depends on the types of
features that the administrator is looking
for. For the simplicity of this topic, as
they are typically similar in setup, I will
be using tmpfs during the examples of this
article.

Configuring a tmpfs mount is
extremely simple. First you must create
a directory to mount the memory-based
virtual volume to:

petros@debian5:~$ sudo mkdir /mnt/tmp

You can then mount the virtual volume with
any supported options. In the example below,
I have chosen a size limit of 50 MB. You can
view all supported options for tmpfs under
the manual page for the mount command
(man 8 mount).

Listing 1. List of supported file systems under running kernel

petros@debian5:~$ cat /proc/filesystems

nodev sysfs

nodev rootfs

nodev bdev

nodev proc

nodev cgroup

nodev cpuset

nodev debugfs

nodev securityfs

nodev sockfs

nodev pipefs

nodev anon_inodefs

nodev tmpfs

nodev inotifyfs

nodev devpts

nodev ramfs

nodev hugetlbfs

 iso9660

nodev mqueue

nodev usbfs

 ext3

 ext2

Listing 2. Listing of mounted devices using ‘df’

petros@debian5:~$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/debianLinux-root

 7611872 3278496 3946716 46% /

tmpfs 518044 0 518044 0% /lib/init/rw

udev 10240 80 10160 1% /dev

tmpfs 518044 0 518044 0% /dev/shm

/dev/hda1 233335 16410 204477 8% /boot

tmpfs 51200 0 51200 0% /mnt/tmp

38

inDEPTH
The Linux RAM Disk

LINUX+DVD 4/2009 39

inDEPTH
The Linux RAM Disk

www.lpmagazine.org/en

petros@debian5:~$ sudo mount -t tmpfs

-o size=50m tmpfs /mnt/tmp/

When listing all mounted volumes, the
newly created RAM-based volume has
been appended to the bottom of the list (see
Listing 2).

Utilizing a basic method for I/O
generation I wrote to a file on the tmpfs
mount and filled the entire 50 MB with an
I/O profile of 50x 1 MB sequential transfers.
It only took 0.15 seconds (see Listing 3).

When I wrote to another location, local to
my SATA drive, with a similar I/O profile, it
took as much as 0.55 seconds to accomplish
the same task. That is over 3 times the RAM
disk performance for a small file write (see
Listing 4).

I even expanded the virtual volume to
a size of 512 MB (536870912 bytes) and
reran the same test. You can resize the virtual
volume with the following command:

petros@debian5:~$ sudo mount -o

remount,size=512m /mnt/tmp

The RAM disk took 1.5 seconds to write
approximately 512 MB while the SATA
drive accomplished the same task in 19.7
seconds. Note that the SATA volume is
formatted with an ext3 file system and the
device is mounted with the default ordered
journaling method.

Beneficial
Implementations of a RAM Disk
From the rudimentary benchmarks
posted above, one can see the significant
performance gains when utilizing a RAM
disk. After seeing such great results, the
first question to come up is: Where can I
use this? The best answer I can give is that
for your normal end-user it can significantly

speed up caching performance from various
applications such as the Mozilla Firefox
web browser. It usually does not matter
that the contents disappear on a system
shutdown. Without these contents cached
locally to disk, you also run less of a risk
from potential security threats. On the
business or enterprise computing scene, it
can serve well in an area where constant
database queries or other web services are
being cached and routinely accessed. In
some situations, it may not necessarily be
important to preserve such information in
an event of failure and if it were, I would
hope that the storage administrator would
have employed some form of redundancy
under the idea of high availability (i.e.
clustering, load-balancing, multipathing/
failover, etc.)

Let us say that you wanted to improve
the caching performance of your Firefox
web browser, you can do so in the following
steps (specify the mount point and volume
size that you are most comfortable with):

petros@debian5:~$ sudo mkdir /mnt/tmp

petros@debian5:~$ sudo mount -t tmpfs

-o size=96m,nr_inodes=10k,mode=0777

tmpfs /mnt/tmp/

To have the virtual volume automatically
mount at bootup, modify your /etc/fstab
file by appending the following line:

tmpfs /mnt/tmp tmpfs size=96m,nr_

inodes=10k,mode=777 0 0

The final step is to open up the Firefox
browser and in the URL address entry
bar, type about:config. You will be
prompted with a message about how you
must be careful and tampering with the
configuration parameters could result in

your warranty on this product being void.
If it does not already exist add the new key
browser.cache.disk.parent_directory
with the value of /mnt/tmp. When you
restart you browser (or reboot your host
and open your web browser), you should
see a directory entry of Cache listed in
/mnt/tmp.

Synchronizing
to Non-Volatile Media
In fact, there are a couple ways that an
individual can go about this. If more
complex and intelligent methods and
approaches are needed, then the creation
of a custom application/daemon would be
beneficial. If only a basic synchronization
is needed over a defined period of elapsed
time, then it can always be configured into
a simple shell script utilizing the rsync
command. Please reference its manual
page for details on supported options (man
1 rsync). If my RAM disk was mounted to
/mnt/tmp and my archival destination was
mounted to /mnt/backup, the command for a
remote synchronization can look something
like this:

petros@debian5:~$ sudo rsync -av /mnt/

tmp /mnt/backup

Using the same command string with the
source and destination directories swapped
can restore the data back into the virtual
volume.

Vendor Implementations of Non-
Volatile RAM Disk Devices
In more recent years, there has been a
trend in the use of SSD technologies for
data storage. These devices have been
manufactured in a few forms; that is, Flash-
based, DRAM-based and also a hybrid of
the two technologies. Vendors such as Texas
Memory Systems, Fusion-io to even Violin
Scalable Memory have been standing in the
forefront of this set of technologies. They
have been manufacturing products utilizing
both Flash-based and also DRAM-based
Solid State Media.

The Flash-based SSD provides great
read and sequential/random performance
as there is very little latency in seeking,
but with regards to write performance
it suffers. Other handicaps come from
the life expectancy of cell erase/rewrite
methods. Both NAND and NOR based
technologies have their own maximum
erase/rewrite ratings. More recently this
has been controlled by the manufacturer

Listing 3. Writing to tmpfs mounted device

petros@debian5:~$ dd if=/dev/zero of=/mnt/tmp/test.txt bs=1M

dd: writing '/mnt/tmp/test.txt': No space left on device

50+0 records in

49+0 records out

52371456 bytes (52 MB) copied, 0.157543 s, 332 MB/s

Listing 4. Writing to local SATA disk drive

petros@debian5:/mnt$ dd if=/dev/zero of=/tmp/test.txt bs=1M count=50

50+0 records in

50+0 records out

52428800 bytes (52 MB) copied, 0.550141 s, 95.3 MB/s

38

inDEPTH
The Linux RAM Disk

LINUX+DVD 4/2009 39

inDEPTH
The Linux RAM Disk

www.lpmagazine.org/en

implementing their own mechanism for
wear-leveling so that all write operations
are spread across the entire medium;
completely transparent to the operating
system writing to it. And despite the cell
sizes a write operation for a standard Flash
SSD operates in pages of 128K. So if I
were to write 127K or 1 byte of data, an
entire page of 128K is pulled into memory,
the bytes are then modified, the location
on the SSD is erased and finally rewritten
(not exactly in this order). This takes a lot
of time. Especially when performing with
larger files and I/O transfers. The write
performance (after a few hours of use
out-of-box) takes a tremendous hit and
decreases. This is where implementing
a tmpfs or ramfs mount for applications
that do a lot of caching can become
advantageous for a node using a Flash SSD
as its local hard drive.

Some of these same vendors have
also invested both time and money in
manufacturing rack-mountable storage
arrays in which the entire architecture runs
entirely on DRAM. In an event of power
failure, there is a battery backup device
integrated into the system, which when fully
charged will synchronize all data to a local
backup media. This could be a standard
magnetic SAS, SATA or Fibre Channel
drive to a Flash SSD. When the power to the
unit is re-established, the synchronized data
will get loaded back into memory. What
makes this concept the most interesting
is that vendors such as Violin have been
open about using the Linux kernel while
also attempting to integrate their device
driver (in the name of Ramback) into the
kernel tree. I have followed some of the
e-mails from the Linux Kernel Mailing
List (LKML) but to date and as of the
2.6.30 kernel, these drivers have not been
integrated. Individuals on the mailing list
expressed numerous concerns with the
driver. Ideal conditions needed to be met
before it could work as expected. These
DRAM SSD products operate with limited

volume sizes and are usually intended for
database operations. For example, between
both Texas Memory Systems and Violin
Scalable Memory, a 2U/3U/4U product
can work with DRAM volumes ranging
from 16 GB to 512 GB; some performing
as high as 1 million IOPS (Inputs/Outputs
Per Second). Most if not all of these units
are expandable and an entire cabinet will
be able to hold multiple units connected
in series and operating as a single array.
Obviously this does not compare to the
capacities of the traditional magnetic disk
drives and therefore is somewhat limited
in the applications it can fill. Another
drawback to this up and coming technology
is that it costs significantly more than an
array of magnetic hard drives. Although
prices are slowly declining as the concept
and uses become more popular.

With regards to the hybrids of the two
SSD technologies, Acard Technology has
been manufacturing hard drive modules
that closely resemble your DVD/CD drive
module and can be mounted into your
desktop PC as such. They contain a SATA
back-end and process a total capacity of
64 GB. The drive contains a rechargeable
battery along with a Compact Flash module
for data synchronization/ restoration.

Conclusion
As can be seen, RAM disks offer great
advantages and can be used to make our
computing lives easier and faster. I will
however give a word of caution as to
when a RAM disk has been made via the
tmpfs or ramfs file system modules, and is
being utilized, it will take memory from
your system and not return until it has
been freed, either through the purging of
data file contents or even through the use
of the umount command to unmount the
virtual volume. No more memory should
be allocated for the virtual volume than the
system can handle. The other concern is
that the data is stored in a volatile volume,
so if the data is important, you must be
sure to employ some method of data
synchronization to a non-volatile storage
device.

For the developers who are interested
in learning more about these device drivers,
writing a RAM disk file system module
is fairly simple and is a great learning
experience when it comes to understanding
the mechanics of file systems. There are
many tutorials on the same topic posted on
the Internet. Although, it must be warned
that the majority of tutorials are going

to be a bit outdated and some research
will need to be conducted during the
development process.

As a result of writing this article, I have
taken some time to write a generic Linux
block device (rxd) that resides entirely in
memory from module insertion to removal.
This should only be used as a learning tool.
The source code to version 0.1.1 of the device
driver can be found at www.hydrasysllc.com/
downloads/rxd011.tar.gz. The archived file
not only includes the source to the Linux
module but also a binary application that
performs supported ioctl, seek, read and
write operations to the RAM disk device
module. Once inserted the disk device
operates as any other block device in which
a file system can be written to it and the
device can then be mounted to any local
mount point. Note that once you remove
the module or if the system were to reboot,
all data written to the RAM disk device will
disappear from memory. The device driver
defaults to a total volume size of 64 MB.
This can be adjusted during the insertion of
the module with an optional input parameter
(sudo insmod rxd.ko sizemb=96). The
README.txt file packaged with the source
code contains instructions for compilation
and initialization of all code. All updates to
the device driver will be posted on my blog
at blog.hydrasysllc.com. This version of
the device driver has been tested on 2.6.26
kernels (Fedora 8 and Debian 5.0.1) and will
not compile on the 2.6.28 kernel. This is a
result of modifications to the block_device_
operations structure within the kernel code.
Support for later kernel revisions will be
addressed in the very near future.

Switching back onto the topic of
hardware RAM disks, I see a strong future
in this direction. As maximum capacities
increase and prices drop, will it make our
current magnetic disk drives go the way of
the dodo bird?

Petros Koutoupis has been using Linux
since 2001 and has been involved with
software development and administration
even longer. He has been involved
with enterprise storage computing from
2005 to the present and currently offers
consultation services in the same field. His
Web Site is www.hydrasystemsllc.com. He
can always be contacted at pkoutoupis@h
ydrasystemsllc.com.

About the Author

• Bar, Moshe. Linux File Systems
• Pate, Steven. UNIX Filesystems
• http://en.wikipedia.org/wiki/TMPFS
• http://wiki.debian.org/ramfs
• http://en.wikipedia.org/wiki/Ram_disk
• http://www.ramsan.com/
• http://www.violin-memory.com/

Resources

